Contoh Soal Dan Pembahasan Perihal Barisan Dan Deret Aritmatika Untuk Kelas 9 Smp
Rumus suku ke-n barisan aritmatika adalah: Un = a + (n-1) b
Keterangan: Un = suku ke-n
a = suku pertama
b = beda (U2-U1 atau U3-U2, dan seterusnya)
Rumus deret aritmatika: Pada soal biasanya berupa jumlah suku, jadi rumus jumlah suku ke-n suatu barisan aritmatika adalah:
Sn = n/2 (2a + (n-1) b) atau Sn= n/2 (a + Un)
Untuk lebih memperjelas pemahaman kalian, mari kita berguru soal. Berikut abang beri pola soal dan pembahasannya:
Soal 1:
Rumus suku ke-n barisan aritmatika 94, 90, 86, 82, ... adalah...
a. Un = 90 + 4n
b. Un = 94 + 4n
c. Un = 94 - 4n
d. Un = 98 - 4n
Pembahasan:
Suku pertama = a = 94
Beda = b = 90 - 94 = -4
suku ke-n = Un = a + (n-1) b
= 94 + (n-1) -4
= 94 + (-4n) + 4
= 94 + 4 - 4n
= 98 - 4n (pilihan d)
Soal 2:
Dari barisan aritmatika diketahui suku ke-3 = 14 dan suku ke-7 = 26. Jumlah 18 suku pertama adalah....
a. 531
b. 603
c. 1.062
d. 1.206
Pembahasan:
U3 = 14
a + (3-1) b = 14
a + 2b = 14 ...... (persamaan pertama)
U7 = 26
a + (7-1) b = 26
a + 6b = 26 .... (persamaan dua)
Selanjutnya persamaan satu dan persamaan dua kita kurangkan:
Lalu kita ambil persamaan pertama untuk mencari nilai a:
a + 2b = 14 (kita ganti b dengan 3, alasannya hasil b = 3)
a + 2(3) = 14
a + 6 = 14
a = 14-6
a = 8
Selanjutnya kita masukkan a = 8 dan b = 3 pada rumus jumlah suku atau Sn untuk mencari jumlah 18 suku pertama:
Sn = n/2 (2a + (n-1)b)
S18 = 18/2 (2.8 + (18-1)3)
= 9 (16 + 17.3)
= 9 (16 + 51)
= 9. 67
= 603 (pilihan b)
Soal 3:
Diketahui deret aritmatika 17, 20, 23, 26, ... Jumlah tiga puluh suku pertama deret tersebut adalah...
a. 1.815
b. 2.520
c. 2.310
d. 2.550
Pembahasan:
suku pertama = a = 17
Beda = b = U2-U1 = 20-17 = 3
Jumlah 30 suku pertama = S30
Sn = n/2 (2a + (n-1)b)
S30 = 30/2 (2.17 + (30-1)3)
= 15 (34 + 29.3)
= 15 (34 + 87)
= 15.121
= 1.815 (pilihan a)
Soal 4:
Banyak dingklik pada baris pertama di gedung kesenian ada 22 buah. Banyak dingklik pada baris di belakangnya 3 buah lebih banyak dari dingklik pada baris di depannya. Banyak dingklik pada baris kedua puluh adalah...
a. 77
b. 79
c. 82
d. 910
Pembahasan:
Bila dituliskan, maka bentuk barisan aritmatika dingklik di gedung itu adalah: 22, 25, 28, ...
Ditanyakan: banyak dingklik pada baris ke-20. Makara kita diminta mencari U20
Un = a + (n-1)b
U20 = 22 + (20-1)3
= 22 + 19.3
= 22 + 57
= 79 (pilihan b)
Soal 5:
Dari barisan aritmatika diketahui suku ke-7 = 22 dan suku ke-11 = 34. Jumlah 18 suku pertama adalah...
a. 531
b. 666
c. 1.062
d. 1.332
Pembahasan:
U7 = 22
a + (7-1)b = 22
a + 6b = 22 ...... (persamaan pertama)
U11 = 34
a + (11-1)b = 34
a + 10b = 34 .... (persamaan dua)
Selanjutnya persamaan satu dan persamaan dua kita kurangkan:
Lalu kita ambil persamaan pertama untuk mencari nilai a:
a + 6b = 22 (kita ganti b dengan 3, alasannya hasil b = 3)
a + 6(3) = 22
a + 18 = 22
a = 22-18
a = 4
Selanjutnya kita masukkan a = 4 dan b = 3 pada rumus jumlah suku atau Sn untuk mencari jumlah 18 suku pertama:
Sn = n/2 (2a + (n-1)b)
S18 = 18/2 (2.4 + (18-1)3)
= 9 (8 + 17.3)
= 9 (8 + 51)
= 9. 59
= 531 (pilihan a)
Soal 6:
Diketahui deret aritmatika dengan rumus Sn = 2n^2 + 3n. Beda deret aritmatika tersebut adalah...
a. 3
b. 4
c. 5
d. 9
Pembahasan:
Beda sanggup dicari dengan mengurangkan jumlah 2 suku (S2) dengan jumlah 1 suku (S1)
Sn = 2n^2 + 3n
S2 = 2.2^2 + 3.2
= 2.4 + 6
= 8 + 6
= 14
Sn = 2n^2 + 3n
S1 = 2.1^2 + 3.1
= 2.1 + 3
= 2 + 3
= 5
beda = b = S2-S1
= 14 - 5
= 9 (pilihan d)
Soal 7:
Suatu tumpukan watu bata terdiri atas 15 lapis. Banyak watu bata pada lapis paling atas ada 10 buah, sempurna di bawahnya ada 12 buah, di bawahnya lagi ada 14, dan seterusnya. Banyak watu bata pada lapisan paling bawah ada...
a. 30
b. 32
c. 36
d. 38
Pembahasan:
Pada soal diketahui tumpukan ada 15 lapis, ini berarti jumlah n ada 15, n = 15
Batu bata pada lapis paling atas berjumlah 10, ini berarti U15 = 10
Batu bata pada lapis di bawahnya ada 12, ini berarti U14 = 12
Batu bata pada lapis di bawahnya lagi ada 14, ini berarti U13 = 14
Ditanyakan: jumlah watu bata pada lapisan paling bawah, ini berarti kita diminta mencari suku pertama atau a
U15 = 10
U14 = 12
Beda = b = U15-U14 = 10-12 = -2
Kita jabarkan U15
U15 = 10
Un = a + (n-1)b
a + (15-1).-2 = 10
a + 14.(-2) = 10
a + (-28) = 10
a = 10 + 28
a = 38 (pilihan d)
Soal 8:
Diketahui suatu barisan aritmatika. Suku pertama barisan tersebut 25 dan suku kesebelas 55. Suku ke-45 barisan tersebut adalah...
a. 157
b. 163
c. 169
d. 179
Pembahasan:
U1 = a = 25
U11 = 55
a + (11-1)b = 55
25 + 10b = 55
10b = 55-25
10b = 30
b = 30/10
b = 3
Selanjutnya, kita diminta mencari U-45
Un = a + (n-1)b
U45 = 25 + (45-1)3
= 25 + 44.3
= 25 + 132
= 157 (pilihan a)
Soal 9:
Suku ke-32 dari barisan aritmatika 83, 80, 77, 74, 71, ... adalah...
a. 176
b. 12
c. -10
d. -13
Pembahasan:
suku pertama = a = 83
Beda = b = U2-U1 = 80-83 = -3
Un = a + (n-1)b
U32 = a + (32-1)b
= 83 + 31.(-3)
= 83 + (-93)
= - 10 (pilihan c)
Soal 10:
Dalam ruang pertunjukkan, di baris paling depan tersedia 18 kursi. Baris di belakangnya selalu tersedia 1 dingklik lebih banyak daripada baris di depannya. Jika dalam ruang itu terdapat 12 baris, banyak dingklik seluruhnya adalah... buah.
a. 252
b. 282
c. 284
d. 296
Pembahasan:
Pada soal diketahui:
Baris pertama jumlah dingklik 18 = U1 = a = 18
Baris di belakang 1 lebih banyak = beda = b = 1
Ditanyakan: jumlah seluruh dingklik dalam 1 gedung = Sn = S12 (karena ada 12 baris)
Sn = n/2 (2a + (n-1)b)
S12 = 12/2 (2.18 + (12-1).1)
= 6 (36 + 11.1)
= 6 (36 + 11)
= 6.47
= 282 (pilihan b)
Ingin soal yang lebih banyak, klik disini
Keterangan: Un = suku ke-n
a = suku pertama
b = beda (U2-U1 atau U3-U2, dan seterusnya)
Rumus deret aritmatika: Pada soal biasanya berupa jumlah suku, jadi rumus jumlah suku ke-n suatu barisan aritmatika adalah:
Sn = n/2 (2a + (n-1) b) atau Sn= n/2 (a + Un)
Untuk lebih memperjelas pemahaman kalian, mari kita berguru soal. Berikut abang beri pola soal dan pembahasannya:
Soal 1:
Rumus suku ke-n barisan aritmatika 94, 90, 86, 82, ... adalah...
a. Un = 90 + 4n
b. Un = 94 + 4n
c. Un = 94 - 4n
d. Un = 98 - 4n
Pembahasan:
Suku pertama = a = 94
Beda = b = 90 - 94 = -4
suku ke-n = Un = a + (n-1) b
= 94 + (n-1) -4
= 94 + (-4n) + 4
= 94 + 4 - 4n
= 98 - 4n (pilihan d)
Soal 2:
Dari barisan aritmatika diketahui suku ke-3 = 14 dan suku ke-7 = 26. Jumlah 18 suku pertama adalah....
a. 531
b. 603
c. 1.062
d. 1.206
Pembahasan:
U3 = 14
a + (3-1) b = 14
a + 2b = 14 ...... (persamaan pertama)
U7 = 26
a + (7-1) b = 26
a + 6b = 26 .... (persamaan dua)
Selanjutnya persamaan satu dan persamaan dua kita kurangkan:
Lalu kita ambil persamaan pertama untuk mencari nilai a:
a + 2b = 14 (kita ganti b dengan 3, alasannya hasil b = 3)
a + 2(3) = 14
a + 6 = 14
a = 14-6
a = 8
Selanjutnya kita masukkan a = 8 dan b = 3 pada rumus jumlah suku atau Sn untuk mencari jumlah 18 suku pertama:
Sn = n/2 (2a + (n-1)b)
S18 = 18/2 (2.8 + (18-1)3)
= 9 (16 + 17.3)
= 9 (16 + 51)
= 9. 67
= 603 (pilihan b)
Soal 3:
Diketahui deret aritmatika 17, 20, 23, 26, ... Jumlah tiga puluh suku pertama deret tersebut adalah...
a. 1.815
b. 2.520
c. 2.310
d. 2.550
Pembahasan:
suku pertama = a = 17
Beda = b = U2-U1 = 20-17 = 3
Jumlah 30 suku pertama = S30
Sn = n/2 (2a + (n-1)b)
S30 = 30/2 (2.17 + (30-1)3)
= 15 (34 + 29.3)
= 15 (34 + 87)
= 15.121
= 1.815 (pilihan a)
Soal 4:
Banyak dingklik pada baris pertama di gedung kesenian ada 22 buah. Banyak dingklik pada baris di belakangnya 3 buah lebih banyak dari dingklik pada baris di depannya. Banyak dingklik pada baris kedua puluh adalah...
a. 77
b. 79
c. 82
d. 910
Pembahasan:
Bila dituliskan, maka bentuk barisan aritmatika dingklik di gedung itu adalah: 22, 25, 28, ...
Ditanyakan: banyak dingklik pada baris ke-20. Makara kita diminta mencari U20
Un = a + (n-1)b
U20 = 22 + (20-1)3
= 22 + 19.3
= 22 + 57
= 79 (pilihan b)
Soal 5:
Dari barisan aritmatika diketahui suku ke-7 = 22 dan suku ke-11 = 34. Jumlah 18 suku pertama adalah...
a. 531
b. 666
c. 1.062
d. 1.332
Pembahasan:
U7 = 22
a + (7-1)b = 22
a + 6b = 22 ...... (persamaan pertama)
U11 = 34
a + (11-1)b = 34
a + 10b = 34 .... (persamaan dua)
Selanjutnya persamaan satu dan persamaan dua kita kurangkan:
Lalu kita ambil persamaan pertama untuk mencari nilai a:
a + 6b = 22 (kita ganti b dengan 3, alasannya hasil b = 3)
a + 6(3) = 22
a + 18 = 22
a = 22-18
a = 4
Selanjutnya kita masukkan a = 4 dan b = 3 pada rumus jumlah suku atau Sn untuk mencari jumlah 18 suku pertama:
Sn = n/2 (2a + (n-1)b)
S18 = 18/2 (2.4 + (18-1)3)
= 9 (8 + 17.3)
= 9 (8 + 51)
= 9. 59
= 531 (pilihan a)
Soal 6:
Diketahui deret aritmatika dengan rumus Sn = 2n^2 + 3n. Beda deret aritmatika tersebut adalah...
a. 3
b. 4
c. 5
d. 9
Pembahasan:
Beda sanggup dicari dengan mengurangkan jumlah 2 suku (S2) dengan jumlah 1 suku (S1)
Sn = 2n^2 + 3n
S2 = 2.2^2 + 3.2
= 2.4 + 6
= 8 + 6
= 14
Sn = 2n^2 + 3n
S1 = 2.1^2 + 3.1
= 2.1 + 3
= 2 + 3
= 5
beda = b = S2-S1
= 14 - 5
= 9 (pilihan d)
Soal 7:
Suatu tumpukan watu bata terdiri atas 15 lapis. Banyak watu bata pada lapis paling atas ada 10 buah, sempurna di bawahnya ada 12 buah, di bawahnya lagi ada 14, dan seterusnya. Banyak watu bata pada lapisan paling bawah ada...
a. 30
b. 32
c. 36
d. 38
Pembahasan:
Pada soal diketahui tumpukan ada 15 lapis, ini berarti jumlah n ada 15, n = 15
Batu bata pada lapis paling atas berjumlah 10, ini berarti U15 = 10
Batu bata pada lapis di bawahnya ada 12, ini berarti U14 = 12
Batu bata pada lapis di bawahnya lagi ada 14, ini berarti U13 = 14
Ditanyakan: jumlah watu bata pada lapisan paling bawah, ini berarti kita diminta mencari suku pertama atau a
U15 = 10
U14 = 12
Beda = b = U15-U14 = 10-12 = -2
Kita jabarkan U15
U15 = 10
Un = a + (n-1)b
a + (15-1).-2 = 10
a + 14.(-2) = 10
a + (-28) = 10
a = 10 + 28
a = 38 (pilihan d)
Soal 8:
Diketahui suatu barisan aritmatika. Suku pertama barisan tersebut 25 dan suku kesebelas 55. Suku ke-45 barisan tersebut adalah...
a. 157
b. 163
c. 169
d. 179
Pembahasan:
U1 = a = 25
U11 = 55
a + (11-1)b = 55
25 + 10b = 55
10b = 55-25
10b = 30
b = 30/10
b = 3
Selanjutnya, kita diminta mencari U-45
Un = a + (n-1)b
U45 = 25 + (45-1)3
= 25 + 44.3
= 25 + 132
= 157 (pilihan a)
Soal 9:
Suku ke-32 dari barisan aritmatika 83, 80, 77, 74, 71, ... adalah...
a. 176
b. 12
c. -10
d. -13
Pembahasan:
suku pertama = a = 83
Beda = b = U2-U1 = 80-83 = -3
Un = a + (n-1)b
U32 = a + (32-1)b
= 83 + 31.(-3)
= 83 + (-93)
= - 10 (pilihan c)
Soal 10:
Dalam ruang pertunjukkan, di baris paling depan tersedia 18 kursi. Baris di belakangnya selalu tersedia 1 dingklik lebih banyak daripada baris di depannya. Jika dalam ruang itu terdapat 12 baris, banyak dingklik seluruhnya adalah... buah.
a. 252
b. 282
c. 284
d. 296
Pembahasan:
Pada soal diketahui:
Baris pertama jumlah dingklik 18 = U1 = a = 18
Baris di belakang 1 lebih banyak = beda = b = 1
Ditanyakan: jumlah seluruh dingklik dalam 1 gedung = Sn = S12 (karena ada 12 baris)
Sn = n/2 (2a + (n-1)b)
S12 = 12/2 (2.18 + (12-1).1)
= 6 (36 + 11.1)
= 6 (36 + 11)
= 6.47
= 282 (pilihan b)
Ingin soal yang lebih banyak, klik disini
Post a Comment for "Contoh Soal Dan Pembahasan Perihal Barisan Dan Deret Aritmatika Untuk Kelas 9 Smp"